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Abstract

A procedure for developing multi-material elements, which are able to eliminate the weakness of the conventional
®nite elements in determining the stress distributions along the interfaces of di�erent materials, has been proposed.

The results obtained by this multi-material element type are in good agreement with those obtained by a modi®ed
®nite element approach, which employs the least square ®tting method to improve the calculation of interfacial
stresses. Moreover, these two solutions are superior to the conventional ®nite element solution. The improvements
made by these two modi®ed solutions are entirely due to the imposition of the necessary and su�cient equilibrium

and compatibility conditions at the interfaces. It is worth noting that while the two modi®ed ®nite element
approaches provide comparable accuracy, the proposed approach using new multi-material elements is much easier
to implement. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Soh (1993a) has illustrated the weakness of the conventional ®nite element procedure in determining

the stress distribution along a perfectly bonded ®bre±matrix interface. The said weakness was due to the

fact that the chosen element displacement functions do not explicitly and/or implicitly satisfy the

equilibrium and compatibility conditions that prevail at an interface. As a result, the interfacial stresses

obtained from the matrix and ®bre elements having a common interface are incompatible. This is

especially marked in the vicinity of geometric stress concentrations, since the stresses along the interfaces

can only be determined by extrapolation or some arbitrary means of averaging.

Soh (1993a) has proposed a procedure to eliminate the above-mentioned weakness by employing the

method of least square ®tting. However, the said procedure is tedious because it involves the
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employment of high order polynomials for least square ®tting after the determination of all nodal
displacements by the conventional ®nite element method. This is especially so in the case of three-
dimensional analysis because the procedure of least square ®tting has to be carried out twice in order to
determine all the stress and strain components at any nodal point considered.

The problem of accurate prediction of interfacial stresses is also a major concern for researchers
working on composite laminates (Noor and Burton, 1990). Two fundamental approaches have been
adopted by researchers to solve the said problem. In the ®rst approach, a multilayered plate/shell is
substituted by an equivalent, anisotropic, single layer plate/shell and a power-series expansion is
assumed for the displacement ®eld in terms of the thicknesswise coordinate (Librescu and Khdeir, 1988).
E�orts have also been made by some researchers to modify a three-dimensional element to a two-
dimensional one for the analysis of laminated composite plates/shells (Buragohain and Ravichandran,
1994). In the second approach, the conditions of continuity of interlaminar stresses in a multilayered
plate/shell are satis®ed by introducing generalized displacements at the layer level and imposed contact
conditions as constraints on each layer. This approach was adopted by Murakami (1986), Reddy (1989)
and Di Sciuva (1995) to develop multilayered plate elements.

In this paper, new multi-material three-dimensional elements will be developed to eliminate the
weakness of the conventional ®nite element method. The development procedure and potential accuracy
of this multi-material element type can be illustrated by considering the behaviour of two composite
models, each with a discontinuous ®bre, subjected to prescribed loads. These two models were devised
based on an idealised three-dimensional model, which has a discontinuous ®bre in the centre, as shown
in Fig. 1.

2. Procedure for development of multi-material elements

Fig. 2 shows a three-dimensional brick element which consists of several materials of di�erent
mechanical properties. The displacement ®elds in this multi-material element can be expressed as

Nomenclature

E Modulus of elasticity
G Modulus of rigidity
r, y, z Cylindrical coordinates
x, y, z Cartesian coordinates
u, v, w Displacement components
x, Z, z Isoparametric coordinates
n Poisson's ratio
�s Average axial stress
sr,sy,sz Normal stresses parallel to r, y and z axes, respectively
sx,sy,sz Normal stresses parallel to x, y and z axes, respectively
sx,sZ,sz Normal stresses parallel to x, Z and z axes, respectively
try, tyz, tzr Shear stresses in r, y, z coordinates
txy, tyz, tzx Shear stresses in x, y, z coordinates
txZ, tZz, tzx Shear stresses in x, Z and z coordinates
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um1
� fm1

�x,Z,z�; vm1
� gm1

�x,Z,z�; wm1
� hm1

�x,Z,z�
..
.

ums
� fms

�x,Z,z�; vms
� gms

�x,Z,z�; wms
� hms

�x,Z,z�

9>>=>>;, �1�

where ums
, vms

and wms
are the displacements of the s-th material in the x, Z and z directions,

respectively.
Assume that the interface between the i-th and (i + 1)-th materials is at z=zi, the conditions of

equilibrium and compatibility to be satis®ed at the interface are:

umi
� umi�1 ; vmi

� vmi�1 ; wmi
� wmi�1

�sz�mi
� �sz�mi�1 ; �tzx�mi

� �tzx�mi�1 ; �tZz�mi
� �tZz�mi�1

�
, at z � zi: �2�

By implementing the conditions of equilibrium and compatibility at all the interfaces between di�erent
materials, a set of equations will be obtained which enables the elimination of some coe�cient from the
displacement functions. Thus, the displacement ®elds in the multi-material element can be expressed,
respectively, as

Fig. 1. An idealised three-dimensional ®bre-reinforced composite.

A.K. Soh / International Journal of Solids and Structures 37 (2000) 899±918 901



fdddm1
g � fum1

,vm1
,wm1
gT � �OOOm1

�fLLLg
fdddm2
g � fum2

,vm2
,wm2
gT � �OOOm2

�fLLLg
..
.

fdddms
g � fums

,vms
,wms
gT � �OOOms

�fLLLg

9>>>>=>>>>;, �3�

where {LL} consists of all the independent coe�cients of the displacement functions; and
�OOOm1
�,�OOOm2

�, . . . ,�OOOms
� consist of powers and products of x, Z and z.

By substituting the coordinates and displacements of each and every node in the region of the ®rst
material, including those nodes at the interface between the ®rst and second materials (if there are such
nodes), into the ®rst part of Eq. (3), we obtain�

dddem1

	 � �OOOc1 �fLLLg, �4�

where fdddem1
g is the displacement vector of those nodes, including interfacial nodes, in the ®rst material;

and �OOOc1 � is a coe�cient matrix consisting of powers and products of x, Z and z.
By employing the same procedure for the rest of the materials, we obtain�

dddem2

	 � �OOOc2 �fLLLg
..
.�
dddems

	 � �OOOcs �fLLLg

9>>>=>>>;: �5�

Note that no interfacial nodes are involved in the last part of Eq. (5).

Fig. 2. A typical multi-material brick element.
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By combining Eqs. (4) and (5), we obtain

fdddeg � �OOOc�fLLLg, �6�
where

fdddegT �
n�

dddem1

	T
,
�
dddem2

	T
, . . . ,

�
dddems

	To
and

�OOOc�T �
h
OOOT

c1
,OOOT

c2
, . . . ,OOOT

cs

i
:

Eq. (6) can be expressed as

fLLLg � �OOOc�ÿ1fdddeg: �7�
The displacement ®elds at any point within the i-th material of the element can be expressed in terms

of the nodal displacement vector as follows:

fdddmi
g � �OOOmi

��OOOc�ÿ1fdddeg: �8�
By analogy with the traditional ®nite element method (Bathe, 1996), the term �OOOmi

��OOOc�ÿ1 represents
the shape functions of the i-th region of the element. Accordingly, by adopting standard ®nite element
formulations, we can easily obtain the strain vector, {ee}T={ex, eZ, ez, gxZ, gZz, gzx }

T, at any point in the
i-th material of the element in terms of the nodal displacement vector, i.e.,

feeemi
g � �S�fdddmi

g � �S��OOOmi
��OOOc�ÿ1fdddeg � �Bmi

�fdddeg: �9�
where

�S� �

26666664
@=@x 0 0
0 @=@Z 0
0 0 @=@z
@=@Z @=@x 0
0 @=@z @=@Z
@=@z 0 @=@x

37777775
and

�Bmi
� � �S��OOOmi

��OOOc�ÿ1:
The element sti�ness matrix is given by

�Ke� �
�1
ÿ1

�1
ÿ1

�1
ÿ1
�B�T�D��B�det�J�dx dZ dz �

Xi�s
i�1

� � �
Vmi

�Bmi
�T�Dmi

��Bmi
�det�J�dx dZ dz, �10�

where

�Dmi
� is the elasticity matrix for the i-th region of the element,

det[J] is the determinant of the Jacobian matrix, and
Vmi

is the volume of the i-th region.
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These type of elements can be employed together with other types of elements to improve the
accuracy of the stresses computed at the interfaces between di�erent materials.

3. Development of a twenty-noded three-dimensional brick element

The displacement ®elds in matrix and ®bre regions of the twenty-noded bi-material element, as shown
in Fig. 3, are, respectively, given by

fdddmg �
8<: um

vm

wm

9=; �
8<: gm1

�x,Z,z�
gm2
�x,Z,z�

gm3
�x,Z,z�

9=;
and

fdddgf �
8<: uf

vf

wf

9=; �
8<: gf1 �x,Z,z�
gf2 �x,Z,z�
gf3 �x,Z,z�

9=;, �11�

where

gmi
� ai,1 � ai,2x� ai,3Z� ai,4z� ai,5x

2 � ai,6xZ� ai,7Z2 � ai,8Zz� ai,9z
2 � ai,10xz� ai,11x

2Z� ai,12xZ2

� ai,13Z2z� ai,14Zz
2 � ai,15z

2x� ai,16zx
2 � ai,17xZz

Fig. 3. A typical bi-material brick element.
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and

gfi � bi,1 � bi,2x� bi,3Z� bi,4z� bi,5x
2 � bi,6xZ� bi,7Z

2 � bi,8Zz� bi,9z
2 � bi,10xz� bi,11x

2Z� bi,12xZ
2

� bi,13Z
2z� bi,14Zz

2 � bi,15z
2x� bi,16zx

2 � bi,17xZz,

in which ai,1, ai,2,..., ai,17 and bi,1, bi,2,..., bi,17 are arbitrary constants and i= 1, 2 and 3.
The conditions of equilibrium and compatibility to be satis®ed at the interface are:

um � uf ; vm � vf ; wm � wf

�sz�m � �sz�f ; �tzx�m � �tzx�f ; �tzZ�m � �tzZ�f

�
at z � 0, �12�

where

�sz�k �
Ek

�1� vk��1ÿ 2vk�
�
�1ÿ vk�@wk

@z
� vk

@uk
@x
� vk

@vk
@Z

�
�tzx�k � Gk

�
@wk

@x
� @uk
@z

�
�tzZ�k � Gk

�
@wk

@Z
� @vk
@z

�

9>>>>>>>>>=>>>>>>>>>;
; k � m,f: �13�

Note that Ek, Gk and vk are the moduli of elasticity and rigidity and Poisson's ratio of the material,
respectively.

By implementing the conditions of equilibrium and compatibility, we obtain

b1,1 � a1,1; b1,2 � a1,2; b1,3 � a1,3; b1,5 � a1,5,

b1,6 � a1,6; b1,7 � a1,7; b1,11 � a1,11; b1,12 � a1,12,

b2,1 � a2,1; b2,2 � a2,2; b2,3 � a2,3; b2,5 � a2,5,

b2,6 � a2,6; b2,7 � a2,7; b2,11 � a2,11; b2,12 � a2,12,

b3,1 � a3,1; b3,2 � a3,2; b3,3 � a3,3; b3,5 � a3,5,

b3,6 � a3,6; b3,7 � a3,7; b3,11 � a3,11; b3,12 � a3,12,

b1,4 � G2a1,4 � �G2 ÿ 1�a3,12,

b1,8 � G2a1,8 � �G2 ÿ 1�a3,6,

b1,10 � G2a1,10 � 2�G2 ÿ 1�a3,5,

b1,13 � G2a1,13 � �G2 ÿ 1�a3,12,
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b1,16 � G2a1,16,

b1,17 � G2a1,17 � 2�G2 ÿ 1�a3,11,

b2,4 � G2a2,4 � �G2 ÿ 1�a3,3,

b2,8 � G2a2,8 � 2�G2 ÿ 1�a3,7,

b2,10 � G2a2,10 � �G2 ÿ 1�a3,6,

b2,13 � G2a2,13,

b2,16 � G2a2,16 � �G2 ÿ 1�a3,11,

b2,17 � G2a2,17 � 2�G2 ÿ 1�a3,12,

b3,4 �
�G1�1ÿ vm�a3,4 � �G1vm ÿ vf��a1,2 � a2,3��

�1ÿ vf� ,

b3,8 �
�G1�1ÿ vm�a3,8 � �G1vm ÿ vf��a1,6 � 2a2,7��

�1ÿ vf� ,

b3,10 �
�G1�1ÿ vm�a3,10 � �G1vm ÿ vf��2a1,5 � a2,6��

�1ÿ vf� ,

b3,13 �
�G1�1ÿ vm�a3,13 � �G1vm ÿ vf�a1,12�

�1ÿ vf� ,

b3,16 �
�G1�1ÿ vm�a3,16 � �G1vm ÿ vf�a2,11�

�1ÿ vf� ,

b3,17 �
�G1�1ÿ vm�a3,17 � 2�G1vm ÿ vf��a1,11 � a2,12��

�1ÿ vf� ,

where

G1 � Em

Ef

� �1� vf��1ÿ 2vf�
�1� vm��1ÿ 2vm�

�
and

G2 � Gm

Gf

:
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Thus, the displacement ®elds in the ®bre region of the bi-material element can be expressed as

uf � a1,1 � a1,2x� a1,3Z� �G2a1,4 � �G2 ÿ 1�a3,12�z� a1,5x
2 � a1,6xZ� a1,7Z2 � �G2a1,8 � �G2

ÿ 1�a3,6�Zz� b1,9z
2 � �G2a1,10 � 2�G2 ÿ 1�a3,5�xz� a1,11x

2Z� a1,12xZ2 � �G2a1,13 � �G2

ÿ 1�a3,12�Z2z� b1,14Zz
2 � b1,15z

2x� G2a1,16zx
2 � �G2a1,17 � 2�G2 ÿ 1�a3,11�xZz, �14�

vf � a2,1 � a2,2x� a2,3Z� �G2a2,4 � �G2 ÿ 1�a3,3�z� a2,5x
2 � a2,6xZ� a2,7Z2 � �G2a2,8

� 2�G2 ÿ 1�a3,7�Zz� b2,9z
2 � �G2a2,10 � �G2 ÿ 1�a3,6�xz� a2,11x

2Z� a2,12xZ2 � G2a2,13Z2z

� b2,14Zz
2 � b2,15z

2x� �G2a2,16 � �G2 ÿ 1�a3,11�zx2 � �G2a2,17 � 2�G2 ÿ 1�a3,12�xZz,

wf � a3,1 � a3,2x� a3,3Z� 1

�1ÿ vf� �G2�1ÿ vm�a3,4 � �G1vm ÿ vf��a1,2 � a2,3��z� a3,5x
2 � a3,6xZ

� a3,7Z2 � 1

�1ÿ vf� �G1�1ÿ vm�a3,8 � �G1vm ÿ vf��a1,6 � 2a2,7��Zz� b3,9z
2 � 1

�1ÿ vf� �G1�1

ÿ vm�a3,10 � �G1vm ÿ vf��2a1,5 � a2,6��xz� a3,11x
2Z� a3,12xZ2 � 1

�1ÿ vf� �G1�1ÿ vm�a3,13

� �G1vm ÿ vf�a1,12�Z2z� b3,14Zz
2 � b3,15z

2x� 1

�1ÿ vf� �G1�1ÿ vm�a3,16 � �G1vm

ÿ vf�a2,11�zx2 � 1

�1ÿ vf� �G1�1ÿ vm�a3,17 � 2�G1vm ÿ vf��a1,11 � a2,12��xZz: �16�

The above equations can be expressed as

fdddmg � �OOOm�fLLLg �17�

and

fdddfg � �OOOf �fLLLg, �18�

where

fdddmg � fum,vm,wmgT,

fdddfg � fuf ,vf ,wfgT,

�OOOm� �
24OOOxm

OOOZm

OOOzm

35,

(15)
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�OOOf � �
24OOOxf

OOOZf

OOOzf

35
and

fLLLg � fa1,1,a1,2, . . . ,a1,17,a2,1,a2,2, . . . ,a2,17,a3,1,a3,2

, . . . ,a3,17,b1,9,b1,14,b1,15,b2,9,b2,14,b2,15,b3,9,b3,14,b3,15gT

Note that [OOxm], [OOZm] and [OOzm] are row matrices consisting of powers and products of x, Z and z for
the displacements in the x, Z and z directions, respectively, in the matrix region. [OOxf], [OOZf] and [OOzf] are
the corresponding row matrices in the ®bre region.

If Eqs. (17) and (18) are satis®ed at nodes 1 through 12 and nodes 13 through 20, respectively, we
obtain

fdddeg � �OOOc�fLLLg, �19�

where

fdddeg � �u1m,v1m,w1
m,u

2
m,v

2
m,w

2
m, . . . ,u12m ,v12m ,w12

m ,u13f ,v13f ,w13
f ,u14f ,v14f ,w14

f , . . . ,u20f ,v20f ,w20
f

	
� the nodal displacement vector:

and

fOOOcgT �
n
OOOT

xm1 ,OOOT
Zm1 ,OOOT

zm1 , . . . ,OOOT
xm12 ,OOOT

Zm12 ,OOOT
zm12 ,OOOT

xf 13 ,OOOT
Zf 13 ,OOOT

zf 13 , . . . ,OOOT
xf 20 ,OOOT

Zf 20 ,OOOT
zf 20 ,

o
:

Note that Eq. (19) is the same as Eq. (6) and the above-mentioned procedure can be employed to
establish the element strain vector in terms of the nodal displacement vector, i.e.,

feeemg � �S�fdddmg � �S��OOOm��OOOc�ÿ1fdddge � �Bm�fdddge
feeefg � �S�fdddfg � �S��OOOf ��OOOc�ÿ1fdddge � �Bf �fdddge

�
, �20�

where

�Bm� � �S��OOOm��OOOc�ÿ1

and

�Bf � � �S��OOOf ��OOOc�ÿ1:
The element sti�ness matrix is given by

�K�e �
�1
ÿ1

�1
ÿ1

�1
ÿ1
�B�T�D��B�det�J�dx dZ dz �

� � �
Vm

�Bm�T�Dm��Bm�det�J�dx dZ dz�
� � �

Vf

�Bf �T�Df ��Bf �det�J�dx dZ dz, �21�

where
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[Dm], [Df ] are the elasticity matrices for the matrix and ®bre regions, respectively; and
Vm, Vf are the volumes of the matrix and ®bre, respectively.

4. The least square method

Soh (1993a) has proposed a procedure to modify the conventional ®nite element method so as to
allow the elastic stresses at the interface of a bi-material to be determined with improved accuracy. In
the said proposal the traditional procedure (Zienkiewicz and Taylor, 1989) is used to determine all the
nodal displacements without modi®cation. Once the nodal displacements are obtained, the stresses at
any nodal point lying on the ®bre±matrix interface, as shown in Fig. 4, are determined by the following
two-step procedure.

First, ®t four continuous displacement functions, �ur�fm, wf
m, �ur�ff and wf

f , by the least square method
to those nodes that are lying in a constant y-plane and surrounding/including the particular node
considered, with the boundary conditions imposed to the ®ve nodal points along the interface. Note that
(ur )m and (ur )f are the displacements of the matrix and ®bre in the r direction; and wm and wf are the
corresponding displacements in the z direction.

By ®tting the four displacement functions to the actual displacements of those nodes involved using
the method of least squares, a set of 42 equations, each with an error term arising from the di�erence
between the actual and best ®tted displacements, can be obtained.

The interface boundary conditions are

�ur�m � �ur�f ,

wm � wf ,

�sr�m � �sr�f
and

�trz�m � �trz�f �22�
By implementing the interface boundary conditions at the ®ve nodes lying on the interface, another 20

equations are obtained. Note that each of these equations consists of an error term arising from the
di�erence between the best-®tted values obtained from the ®bre and matrix.

The 62 equations can be expressed in a matrix symbolic form, i.e.,

fddd0g � �CCC0�fLLLg � fIg, �23�
where {dd0} is a column vector consisting of nodal displacements and zeros; [CC0] is a coe�cient matrix
consisting of powers and products of r and z; [LL] is a column vector consisting of the coe�cients of the
displacement functions for least square ®tting; and {I} is a column vector consisting of the error terms.

By setting @({I}T{I})/@{LL}=0 to satisfy the least square condition, we obtain

fLLLg �
ÿ
�CCC0�T�CCC0�

�ÿ1�CCC0�Tddd0: �24�
The best ®tted displacement functions obtained can then be used to determine the stress components,
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sr, sz and trz, and the corresponding strain components at the nodes considered by employing the
strain±displacement equations and stress±strain relations.

Second, ®t four continuous displacement functions, �ur�fm, �vy�fm, �ur�ff and �vy�ff , by the least square
method to those nodes that are lying in a constant z-plane, surrounding/including the particular node
considered, with the boundary conditions imposed to the ®ve nodal points along the interface. Note that
�vy�fm and �vy�ff are the tangential displacements of the ®bre and matrix, respectively.

The interface boundary conditions are

�ur�m � �ur�f ,

�vy�m � �vy�f ,

Fig. 4. Nodes involved in surface ®tting for determining stresses at corner and mid-side nodes of a three-dimensional problem.
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�sr�m � �sr�f
and

�try�m � �try�f : �25�
The best ®tted displacement functions obtained can then be used to determine the stress components,

sr, sy and try. Note that tyz cannot be directly obtained from the best ®tted displacement functions
because @w/@y and @vy/@z are unknowns. However, the problem can be solved by employing the curve
®tting technique to determine @w/@y and @vy/@z at the nodal point of interest.

5. Finite element modeling

Two examples are employed to illustrate the versatility and potential accuracy of the proposed
element type.

5.1. A discontinuous and some continuous ®bres embedded in a matrix

Fig. 5 shows the three-dimensional model devised by considering only the cylindrical block, which
consists of six continuous and one discontinuous ®bres embedded in a matrix, of the idealised composite
shown in Fig. 1. Because of the symmetry of the structure, it is su�cient to consider only a fraction of it
and the mesh generated, as shown in Fig. 6, was employed to devise two ®nite element models. One
model was built using solely the conventional isoparametric elements and the other using both the
proposed bi-material and the conventional isoparametric element types. The elastic moduli of the ®bre
(duralumin) and matrix (Araldite CT200) were 760 and 32.5 MPa, respectively; and the corresponding
Poisson's ratios were 0.28 and 0.38. The ®rst model was employed to perform the conventional ®nite
element analysis; and the nodal displacements obtained were used to perform least square ®tting, as
proposed by Soh (1993a), to determine the interfacial stresses with better accuracy. The second model
was employed to illustrate the accuracy of the proposed bi-material element type.

Fig. 5. Three-dimensional multi®bre model subjected to tensile loads.
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One of the commonly used conventional methods for determining the stress components at an
interface nodal point is the graphical extrapolation method that uses the values of the stresses obtained
for elements in the vicinity of the nodal point considered. This method has been clearly described by
Soh (1993a) and, therefore, it will not be reiterated here.

5.2. A discontinuous ®bre surrounded by matrix and composite layers

Fig. 7 shows an idealised model of the cylindrical block, which consists of six continuous and one
discontinuous ®bres embedded in a matrix, of the composite shown in Fig. 1. Note that the six
continuous ®bres and the surrounding matrix in a cylinder of inner and outer diameters 2b and 6b,
respectively, have been replaced by a ``simulated'' composite layer. The elastic moduli of the ®bre (E±
glass) and matrix (epoxy resin) were 69.1714 and 3.4266 GPa, respectively; and the corresponding
Poisson's ratios were 0.2 and 0.34. The ``simulated'' composite layer was transversely isotropic and the
elastic constants (Soh, 1993b) were as follows:

Fig. 6. Generation of two ®nite element models using: (i) the proposed bi-material and conventional isoparametric elements, and

(ii) only the conventional isoparametric elements.
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8>>>>>><>>>>>>:

sx
sy
sz
txy
tyz
tzx

9>>>>>>=>>>>>>;
�

26666664
15:50 6:20 5:28 0 0 0
6:20 15:50 5:28 0 0 0
5:28 5:28 47:14 0 0 0
0 0 0 4:65 0 0
0 0 0 0 4:79 0
0 0 0 0 0 4:79

37777775

8>>>>>><>>>>>>:

ex
ey
ez
gxy
gyz
gzx

9>>>>>>=>>>>>>;
�GPa�

where sx, sy, sz, txy, tyz, tzx and ex, ey, ez, gxy, gyz, gzx are the stress and strain components, respectively,
in Cartesian coordinates.

The idealised model shown in Fig. 7 is, in fact, an axisymmetric model. However, a fraction of it was
considered in order to carry out a three-dimensional analysis; and the mesh generated, as shown in Fig.
8, was employed to devise two ®nite element models. One model was built using solely the conventional
isoparametric elements and the other using both the proposed and the conventional isoparametric
element types. Similar to the ®rst example, the nodal displacements, obtained from the analysis of the
®rst model, were used to perform least square ®tting to determine the interfacial stresses with better
accuracy. In the case of the second model, bi- and tri-material elements were employed to model the
®bre±matrix and ®bre±matrix±composite interfaces, respectively. Note that the tri-material elements are
also twenty-noded elements. The said model was devised to illustrate the accuracy of the proposed
element type.

Fig. 7. An idealised composite model.
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Fig. 8. Generation of two ®nite element models using: (i) the proposed multi-material and conventional isoparametric elements,

and (ii) only the conventional isoparametric elements.

Fig. 9. Comparison of the interfacial shear stresses obtained by the modi®ed and conventional ®nite element methods for a three-

dimensional problem.
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6. Discussion of results

6.1. A discontinuous and some continuous ®bres embedded in a matrix

The interfacial shear stress distributions obtained by the two modi®ed ®nite element solutions, one
using the proposed bi-material element type and the other the least square ®tting method, are compared
with the conventional ®nite element solutions in Fig. 9. It is obvious that the stress values derived from
the ®bre and matrix elements are incompatible; the discrepancy between the maximum stresses is 0:5 �sm,
where �sm is the average axial stress in the matrix. Moreover, the maximum stresses determined from the
®bre and matrix elements do not occur at the same position. Note that the stress values of the
conventional solution can be estimated by averaging the values derived from the ®bre and matrix
elements.

The two modi®ed ®nite element solutions are in better agreement as compared with the conventional
®nite element solution in terms of shape, maximum stress value, and position at which it occurs. The
peak values of the ratio of interfacial shear stress to average axial stress in the matrix are 2.57, 2.70 and
1.30 for the modi®ed ®nite element methods using bi-material elements and least square ®tting, and the
extrapolation method, respectively.

The interfacial lateral stress distributions, shown in Fig. 10, again show that the two modi®ed ®nite
element results are in good agreement and they are superior to the conventional results.

Fig. 11 shows the variations of the maximum interfacial shear stress and maximum interfacial tension
with the end gap spacing, obtained by the two modi®ed ®nite element solutions. It is obvious that these
two solutions are in good agreement.

The improvements made by the use of the modi®ed element type and analysis procedure are entirely

Fig. 10. Comparison of the interfacial lateral stresses obtained by the modi®ed and conventional ®nite element methods for a

three-dimensional problem.
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due to the imposition of the necessary and su�cient equilibrium and compatibility conditions at the
®bre±matrix interface. This can be clearly seen from the magnitude of the discrepancy between the stress
values derived from the ®bre and matrix elements in the case of the conventional ®nite element analysis
(refer to Figs. 9 and 10).

6.2. A discontinuous ®bre surrounded by matrix and composite layers

Fig. 12 shows the interfacial shear stress distributions, along the ®bre±matrix and matrix±composite
interfaces, obtained by the two modi®ed ®nite element solutions, one using the proposed multi-material
element type and the other the least square ®tting method. It is obvious that the two solutions agree

Fig. 11. Comparison of the results obtained by the proposed element type and the least square technique.
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very well in terms of both the shape and magnitude. This shows that the results obtained by the twenty-
noded tri-material elements are not less accurate as compared with those of the twenty-noded bi-
material elements. Thus, there is no necessity to increase the number of nodes signi®cantly when the
number of material types involved is increased.

7. Conclusions

The reliability and potential accuracy of the proposed multi-material element type for determining the
stress distributions at the interfaces between di�erent materials have been clearly illustrated. The
improvement made by the use of the said element type is entirely due to the imposition of the necessary
and su�cient equilibrium and compatibility conditions at the interface between di�erent materials. It is
worth noting that although the modi®ed analysis procedure can provide comparable accuracy in
determining the stress distributions at interfaces, the tedious procedure of least square ®tting can be
avoided by employing the proposed multi-material element type. Note that although the proposed
element type is developed for accurate calculation of interfacial stresses, it can also be used to determine

Fig. 12. Comparison of the interfacial shear stress distributions along the interfaces A±B±C and D±E±F obtained by the proposed

element type and the least square technique.
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the e�ective properties of composite materials similar to the model proposed by Alexander and Tzeng
(1997). However, their model is much more versatile for determining the said properties.

The proposed approach for modifying ®nite elements is not con®ned to three-dimensional brick
elements, but is equally applicable to all other element con®gurations with only minor or no
modi®cations to the proposed approach.
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