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Abstract

A procedure for developing multi-material elements, which are able to eliminate the weakness of the conventional
finite elements in determining the stress distributions along the interfaces of different materials, has been proposed.
The results obtained by this multi-material element type are in good agreement with those obtained by a modified
finite element approach, which employs the least square fitting method to improve the calculation of interfacial
stresses. Moreover, these two solutions are superior to the conventional finite element solution. The improvements
made by these two modified solutions are entirely due to the imposition of the necessary and sufficient equilibrium
and compatibility conditions at the interfaces. It is worth noting that while the two modified finite element
approaches provide comparable accuracy, the proposed approach using new multi-material elements is much easier
to implement. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Soh (1993a) has illustrated the weakness of the conventional finite element procedure in determining
the stress distribution along a perfectly bonded fibre—matrix interface. The said weakness was due to the
fact that the chosen element displacement functions do not explicitly and/or implicitly satisfy the
equilibrium and compatibility conditions that prevail at an interface. As a result, the interfacial stresses
obtained from the matrix and fibre elements having a common interface are incompatible. This is
especially marked in the vicinity of geometric stress concentrations, since the stresses along the interfaces
can only be determined by extrapolation or some arbitrary means of averaging.

Soh (1993a) has proposed a procedure to eliminate the above-mentioned weakness by employing the
method of least square fitting. However, the said procedure is tedious because it involves the
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Nomenclature

E Modulus of elasticity

G Modulus of rigidity

r, 0,z Cylindrical coordinates

X, Y, Z Cartesian coordinates

u, v, w Displacement components

En, C Isoparametric coordinates

v Poisson’s ratio

o Average axial stress

G, 09,0 Normal stresses parallel to r, 6 and z axes, respectively
0y, 0y,0: Normal stresses parallel to x, y and z axes, respectively
O, 0y, O; Normal stresses parallel to &, n and { axes, respectively
T4, T0z» Top Shear stresses in r, 0, z coordinates

Typs Tyz, Ty Shear stresses in x, y, z coordinates

Ty Tyes Tee Shear stresses in £, n and { coordinates

employment of high order polynomials for least square fitting after the determination of all nodal
displacements by the conventional finite element method. This is especially so in the case of three-
dimensional analysis because the procedure of least square fitting has to be carried out twice in order to
determine all the stress and strain components at any nodal point considered.

The problem of accurate prediction of interfacial stresses is also a major concern for researchers
working on composite laminates (Noor and Burton, 1990). Two fundamental approaches have been
adopted by researchers to solve the said problem. In the first approach, a multilayered plate/shell is
substituted by an equivalent, anisotropic, single layer plate/shell and a power-series expansion is
assumed for the displacement field in terms of the thicknesswise coordinate (Librescu and Khdeir, 1988).
Efforts have also been made by some researchers to modify a three-dimensional element to a two-
dimensional one for the analysis of laminated composite plates/shells (Buragohain and Ravichandran,
1994). In the second approach, the conditions of continuity of interlaminar stresses in a multilayered
plate/shell are satisfied by introducing generalized displacements at the layer level and imposed contact
conditions as constraints on each layer. This approach was adopted by Murakami (1986), Reddy (1989)
and Di Sciuva (1995) to develop multilayered plate elements.

In this paper, new multi-material three-dimensional elements will be developed to eliminate the
weakness of the conventional finite element method. The development procedure and potential accuracy
of this multi-material element type can be illustrated by considering the behaviour of two composite
models, each with a discontinuous fibre, subjected to prescribed loads. These two models were devised
based on an idealised three-dimensional model, which has a discontinuous fibre in the centre, as shown
in Fig. 1.

2. Procedure for development of multi-material elements

Fig. 2 shows a three-dimensional brick element which consists of several materials of different
mechanical properties. The displacement fields in this multi-material element can be expressed as
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Discontinuous
fibre

Fig. 1. An idealised three-dimensional fibre-reinforced composite.

um| :4fm| (f?”a()a le = gm1 (iansé)a W’ml = hm1 (é’rI?C)
tm, = fin,(E.0; Vm, = gm, (En.0); Wi, = I, (E1.0)

where uy, vm, and wp are the displacements of the s-th material in the &, n and { directions,
respectively.

Assume that the interface between the i-th and (i + 1)-th materials is at {={,, the conditions of
equilibrium and compatibility to be satisfied at the interface are:

umz = uml+]; sz = vmi+l; Wm, = sz+1 o
. : at { = 2
(O-C)m[ = (O-C)m,-ﬂs (Tlﬁ)m,- = (TCf)m,H’ (Tﬂl)ml = (Tﬂi)m,-H ’ !

By implementing the conditions of equilibrium and compatibility at all the interfaces between different
materials, a set of equations will be obtained which enables the elimination of some coefficient from the
displacement functions. Thus, the displacement fields in the multi-material element can be expressed,
respectively, as
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several mid-side nodes
along each edge

@ @
Material s
L n
* *
£=§
® Material i
v
Material 1

c=_1—T L 4 L
n=-1 n=1

Fig. 2. A typical multi-material brick element.

) = [Qu J{A)
[Qn, J{A}

{8m|} = {Uml,\)m],W'ml T
{smz} = {umzavmg 7M7m2}

{am\} = {MmA,Vm\,Wm\_}T = [Qms]{A}

where {A} consists of all the independent coefficients of the displacement functions; and
[Q0n, ][, s - - - ,[Lm,] consist of powers and products of &, n and (.

By substituting the coordinates and displacements of each and every node in the region of the first
material, including those nodes at the interface between the first and second materials (if there are such
nodes), into the first part of Eq. (3), we obtain

{85, ) =[Qc1{A}, @)

where {Sfm} is the displacement vector of those nodes, including interfacial nodes, in the first material;
and [Q,,] is a coefficient matrix consisting of powers and products of &, n and (.
By employing the same procedure for the rest of the materials, we obtain

(85, ] = [Q.](A)

: 5)
(85} = [Q](A)

m

Note that no interfacial nodes are involved in the last part of Eq. (5).
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By combining Egs. (4) and (5), we obtain
{8°) = [Q:{A},

where
597 = H{sfn] }T,{anz }T, . }T}
and

Q)" = [QCTI,QZ;,...,QZ].

Eq. (6) can be expressed as
(A} =[Qc] (8.

903

(6)

™)

The displacement fields at any point within the i-th material of the element can be expressed in terms

of the nodal displacement vector as follows:

{8m;} = [Qm,»][Qc]71 {5()}

®)

By analogy with the traditional finite element method (Bathe, 1996), the term [Qm,.][Qc]*1 represents
the shape functions of the i-th region of the element. Accordingly, by adopting standard finite element
formulations, we can easily obtain the strain vector, {g}’ = {ee, &y &, Yens Vnos ygé}»T, at any point in the

i-th material of the element in terms of the nodal displacement vector, i.e.,

{em) = [S1{8m,} = [SI[Qun,[Q:] {8} = [Bin, {8}

where
9/0& 0 0
0 a/on 0
10 0 a/0(
[8]= a/on 9/3¢ 0O
0 /9 d/on
9/ 0 9/0¢
and

[Bun,] = [S][Qn J[Q:] "
The element stiffness matrix is given by

1 1 1 - i=s -
K] = J_ILJ_I[B] [DI[Bldet(J]d¢ dn d¢ = ;j“y [B,,17[Dy J[By Jdet[T)dE dy d,
where

[Dn,] is the elasticity matrix for the i-th region of the element,
det[J] is the determinant of the Jacobian matrix, and
Vm, 18 the volume of the i-th region.

)

(10)
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These type of elements can be employed together with other types of elements to improve the
accuracy of the stresses computed at the interfaces between different materials.

3. Development of a twenty-noded three-dimensional brick element

The displacement fields in matrix and fibre regions of the twenty-noded bi-material element, as shown
in Fig. 3, are, respectively, given by

Unm gm, (E:1,0)
{Sm} = Vm = gmz(é,rl,g)
‘/Vm gm}(é’n’C)
and
Us &f, (59’77()
{8}f = vt = gfz(ivnvg) 5 (11)
Wy g1, (En.0)
where

Gy = i1+ 0in F o3n 4+ il + 0i5E o6l + i + oisnl + 0ol 010l F 011 En + o2 énp?

+ o 1317 A 014 015 E A 16l ER + o17Enl

E=-1

G- g

Matrix ————

n=-1 n=1

Fig. 3. A typical bi-material brick element.
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and
g = Biy + Binl + Bisn + Pial + ,[))i,Séz + Bisln + Bin® + Pisnl + ,[))i,9C2 + Bi10cl + ,[))i,nfzrl + Binén’
+ B+ BinanC + BiasCE + BiielE + Biirénl,

in which o; 1, %;5,..., ;17 and f; 1, B;2,..., fi17 are arbitrary constants and i = 1, 2 and 3.
The conditions of equilibrium and compatibility to be satisfied at the interface are:

Un = Uf; Vm = Vg3 Wi = Wy
at { =0, 12
0 = (0 (@ = (@ (Tl = (T } ¢ (12)
where
Ej AWy du 8vk)

k= T 1 — v + v F
@ = T =) <( D5 + e Tk,

BW/( Buk
(e = Gk( a¢ 3_C> ; k=mf. (13)

owr Iy
o = G G+ 57 )

Note that Ej, G, and v, are the moduli of elasticity and rigidity and Poisson’s ratio of the material,
respectively.
By implementing the conditions of equilibrium and compatibility, we obtain

ﬁl,l = 0115 /31,2 = 0125 ﬁl,s =013 /31,5 = 1,5,
Bie =216 Br7 =017 B = on11s Bria = %112,
32,1 = %215 ﬁz,z = 2,2, 32,3 = 02,3, [32,5 = 2,5,
Bas = %265 Pa7 = 0275 Po1 = %2115 Ban = %212,
33,1 = %31, /33,2 = 3.2, ﬁ3,3 =033, 53,5 = 3,5,
ﬁs,é = 036, ﬁ3,7 = 03,75 ﬁs,n = 03,115 ﬁ3,12 = 03,12,
Bra=Tr014+ T2 — Daz 2,

Big =Trog+ Iy — Dazg,

Bio =200 +2(I'2 — Do s,

Biaz = oz + (T2 — Doag 12,
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Biie = 201165

Bia7 = o7 +2(IN2 — Doz 11,
Bra=T2004+ (I — Doass,
Bog = Ioag +2(I'2 — Nz 7,
Baio = 0210 + (I'y — Dase,
Baiz = 20213,

Baie =016 + (T2 — Do 11,
Bo17 =017 +2(I' — Dag, 12,

_ [Fi(1 = vm)oz g + (F'ivm — ve)(ar 2 + 02,3)]

Fas = ’
By = (1 (1 — vm)ass + (I vm — ve) (21,6 + 200.7)]
- (1= ) ’
Baro = [F1(1 = vm)oz 10 + (Uivm — ve) 2oty 5 + 026)]
10 (1—vp) ’
Bars = [F1(1 = vm)az 13 + (T v — ve)ag,12]
e (1= ) ’
Boi = [I1(1 — vm)az16 + (I v — ve)a,11]
3,]6 (1 _ Vf) >
By = ['1(1 = vm)oz 17 4+ 2(I 1 v — ve)(oe, 11 + o2,12)]
W (=) ’
where
o En[ (L300 =2w)
FTOE L+ va)(1 = 2vm)
and
r, = Gn

G’
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Thus, the displacement fields in the fibre region of the bi-material element can be expressed as
up = oy + o 28 + o 30 + [Tt g + (D — Dotz 2]l + 01,58 + ar,66n + o m* + [Tao s + (I
— Doz elnl + /31,942 + [Tao10 + 2(I"2 — Do s1EC + 01183 + oy 1280 + [Tao 13 + (I

— Dotz 21?4 BraanC + BrasCE + Do 1608 + [Taoy 17 + 2( — Doz 11én¢, (14)

ve = 01 + 002 + 0030 + [a04 + (I — Do) + o058 + 02,68 + o 7m* + [Taog
+2(I"y = Da 7l + Pool® + [Ta0a,10 + (Fa — Dot3 ¢ + 00,11 E0 + o0,1280” + Doz 3L
+ BoaaC + BoysCE + [Tao 6 + (I — Doz 111LE + [Taoa 17 + 2(I2 — Dotz 12]énd, (15)

1
w =031 + 328 + 0330 + m[rz(l — V)3 + (F1vm — vo) (o2 4 003)]C + o358 + 03,680

1 1

+ oz + [F1(1 = va)oa s + (Fivm — ve)(et6 + 200 )]0l + Baol + ———[I1(1
(1 =) (1—v)
1
— vm)a3.10 + (F1vm — v)QRot1s + 02,6)IE0 + 0511 €7 + 03,1280 + m[rl(l — Vm)%3,13
1
+ (Fvm = v oI+ By aanl + By s + m[rl(l — vm)a316 + (I'1vm
1

= wan )&+ G S I = v)aar + 20— (e + )l (16)

The above equations can be expressed as

{Om} = [Qm]{A} (17)
and

{8¢) = [Qr{A}, (18)
where

{Sm} = {um>vmawm}T;

(8¢} = {ur,ve, e},

Qi
[Qm] = Q;]m 5
Qi
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and

{A} = {o,1,00,2, - - ,001,17,00,1,02,2, - -+ ,02,17,003,1,03 2

T
s 031781058 1,14B1,15582,0:82,14582.15:83.9:3,14: 83,15}

Note that [Q:p,], [,m] and [Q;,] are row matrices consisting of powers and products of &, # and { for
the displacements in the £, # and { directions, respectively, in the matrix region. [Qc], [Q,] and [Q;] are
the corresponding row matrices in the fibre region.

If Egs. (17) and (18) are satisfied at nodes 1 through 12 and nodes 13 through 20, respectively, we
obtain

{8 = [Q){A}, (19)
where
, Lol 22 12 1212 13 (13 13 14 14 14 20 120 | 20
{6} = {um,vm,wm,um,vm,wm,...,um Vi Wi sUg ™ Ve W™ U Ve W U Vs WE }

= the nodal displacement vector.
and

Q)7 = {ngl o’ of

nm" L_,m]"'

T T T
. ’Qimlz ’Qﬂmlz ,Qy

T T T T T T
LR LARK o AR K /S LA

Note that Eq. (19) is the same as Eq. (6) and the above-mentioned procedure can be employed to
establish the element strain vector in terms of the nodal displacement vector, i.c.,

{&m} = [S){8m) = [SIQn][Q] {8} = [Bm]{3}* } (20)
{er) = [S1{8¢) = [SIIQ] " (8)° = [BI(8) |

where

[Bn] = [SIQu ][]
and

[Bi] = [SIIQ]IQ:] "

The element stiffness matrix is given by

1 1 1
e __ T v T
K = J_ILJ_I[B] DI[BIdetJ1de dy df — ”JV [B) (D ][Bu]det[J1dE dy dZ-+

”JV (B, )7 [D/][B]det[J]d¢ di . o

where
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[Dy], [Dy¢] are the elasticity matrices for the matrix and fibre regions, respectively; and
Vm, V¢ are the volumes of the matrix and fibre, respectively.

4. The least square method

Soh (1993a) has proposed a procedure to modify the conventional finite element method so as to
allow the elastic stresses at the interface of a bi-material to be determined with improved accuracy. In
the said proposal the traditional procedure (Zienkiewicz and Taylor, 1989) is used to determine all the
nodal displacements without modification. Once the nodal displacements are obtained, the stresses at
any nodal point lying on the fibre—matrix interface, as shown in Fig. 4, are determined by the following
two-step procedure.

First, fit four continuous displacement functions, (ur)fn, wfn, (u,)? and wf, by the least square method
to those nodes that are lying in a constant #-plane and surrounding/including the particular node
considered, with the boundary conditions imposed to the five nodal points along the interface. Note that
(4, )m and (u,.); are the displacements of the matrix and fibre in the r direction; and w,, and wg are the
corresponding displacements in the z direction.

By fitting the four displacement functions to the actual displacements of those nodes involved using
the method of least squares, a set of 42 equations, each with an error term arising from the difference
between the actual and best fitted displacements, can be obtained.

The interface boundary conditions are

(ur)m = (ul‘)f)
Wm = Wy,
(0)m = (07);
and
(Trz)m = (Trz)f (22)

By implementing the interface boundary conditions at the five nodes lying on the interface, another 20
equations are obtained. Note that each of these equations consists of an error term arising from the
difference between the best-fitted values obtained from the fibre and matrix.

The 62 equations can be expressed in a matrix symbolic form, i.e.,

{80} = [Wol{A} + {1}, (23)

where {8} is a column vector consisting of nodal displacements and zeros; [Wy] is a coefficient matrix

consisting of powers and products of r and z; [A] is a column vector consisting of the coefficients of the

displacement functions for least square fitting; and {I} is a column vector consisting of the error terms.
By setting a({I}"{I})/d{A} =0 to satisfy the least square condition, we obtain

(A} = (%) [%0]) " [%0] 0. (24)

The best fitted displacement functions obtained can then be used to determine the stress components,
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Matrix

Fibre matrix
interface

,— Fibre

—— Corner node

l_ Mid-side node
type 1

__ Mid-side node
type 2

7777

(i) Constant 6-plane

(i) Constant z-plane
(c) Mid-side node type 1 considered

| — Constant
z-plane

| — Constant
O-plane

(i) Constant z-plane
(d) Mid-side node type 2 considered

Fig. 4. Nodes involved in surface fitting for determining stresses at corner and mid-side nodes of a three-dimensional problem.

6., o. and t,., and the corresponding strain components at the nodes considered by employing the
strain—displacement equations and stress—strain relations. ‘

Second, fit four continuous displacement functions, (u,.):n, (v(;);, (u,)§ and (v(;)i, by the least square
method to those nodes that are lying in a constant z-plane, surrounding/including the particular node
considered, with the boundary conditions imposed to the five nodal points along the interface. Note that
(ve)fn and (ve)£ are the tangential displacements of the fibre and matrix, respectively.

The interface boundary conditions are

() = (),

(v0)m = o)y,
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(Gl‘)m = (Gl')f
and

(TI‘B)m = (TrQ)f~ (25)

The best fitted displacement functions obtained can then be used to determine the stress components,
6., o9 and 7,9. Note that 7). cannot be directly obtained from the best fitted displacement functions
because aw/d0 and dvy/dz are unknowns. However, the problem can be solved by employing the curve
fitting technique to determine dw/d0 and 9vy/dz at the nodal point of interest.

5. Finite element modeling

Two examples are employed to illustrate the versatility and potential accuracy of the proposed
element type.

5.1. A discontinuous and some continuous fibres embedded in a matrix

Fig. 5 shows the three-dimensional model devised by considering only the cylindrical block, which
consists of six continuous and one discontinuous fibres embedded in a matrix, of the idealised composite
shown in Fig. 1. Because of the symmetry of the structure, it is sufficient to consider only a fraction of it
and the mesh generated, as shown in Fig. 6, was employed to devise two finite element models. One
model was built using solely the conventional isoparametric elements and the other using both the
proposed bi-material and the conventional isoparametric element types. The elastic moduli of the fibre
(duralumin) and matrix (Araldite CT200) were 760 and 32.5 MPa, respectively; and the corresponding
Poisson’s ratios were 0.28 and 0.38. The first model was employed to perform the conventional finite
element analysis; and the nodal displacements obtained were used to perform least square fitting, as
proposed by Soh (1993a), to determine the interfacial stresses with better accuracy. The second model
was employed to illustrate the accuracy of the proposed bi-material element type.

a=23.175mm
b=1.7a

N

E

k]
S
N
%

Section A-A

Fig. 5. Three-dimensional multifibre model subjected to tensile loads.
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Bi-material
elements for
fibre and matrix

SectionA-A

Fig. 6. Generation of two finite element models using: (i) the proposed bi-material and conventional isoparametric elements, and
(ii) only the conventional isoparametric elements.

One of the commonly used conventional methods for determining the stress components at an
interface nodal point is the graphical extrapolation method that uses the values of the stresses obtained
for elements in the vicinity of the nodal point considered. This method has been clearly described by
Soh (1993a) and, therefore, it will not be reiterated here.

5.2. A discontinuous fibre surrounded by matrix and composite layers

Fig. 7 shows an idealised model of the cylindrical block, which consists of six continuous and one
discontinuous fibres embedded in a matrix, of the composite shown in Fig. 1. Note that the six
continuous fibres and the surrounding matrix in a cylinder of inner and outer diameters 2b and 6b,
respectively, have been replaced by a “simulated” composite layer. The elastic moduli of the fibre (E—
glass) and matrix (epoxy resin) were 69.1714 and 3.4266 GPa, respectively; and the corresponding
Poisson’s ratios were 0.2 and 0.34. The “simulated” composite layer was transversely isotropic and the
elastic constants (Soh, 1993b) were as follows:
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7.2a

N
N
o

=

AL AN,

Fibre
Matrix

Composite

2b=2.4a

Fig. 7. An idealised composite model.

G,

o, 1550 620 528 0 0 0 o
o, 620 1550 528 0 0 0 &
o. | 528 528 4714 0 0 0 Iy
o [T |0 0 0 465 0 0 Tay (GPa)
T, 0 0 0 0 479 0 Vye
Ty 0 0 0 0 0 479 |y,

where oy, 0), 0=, Tyy, Tyz, Ty ANd €y, &y, &2, Vxps Vi Yoy are the stress and strain components, respectively,
in Cartesian coordinates.

The idealised model shown in Fig. 7 is, in fact, an axisymmetric model. However, a fraction of it was
considered in order to carry out a three-dimensional analysis; and the mesh generated, as shown in Fig.
8, was employed to devise two finite element models. One model was built using solely the conventional
isoparametric elements and the other using both the proposed and the conventional isoparametric
element types. Similar to the first example, the nodal displacements, obtained from the analysis of the
first model, were used to perform least square fitting to determine the interfacial stresses with better
accuracy. In the case of the second model, bi- and tri-material elements were employed to model the
fibre—matrix and fibre-matrix—composite interfaces, respectively. Note that the tri-material elements are
also twenty-noded elements. The said model was devised to illustrate the accuracy of the proposed
element type.
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Bi-material elements
A /" for fibre and matrix

£

Bi-material elements
for fibre and composite

_

A Section A-A

Fig. 8. Generation of two finite element models using: (i) the proposed multi-material and conventional isoparametric elements,
and (ii) only the conventional isoparametric elements.

A [
—_— 5
—— 270 % f
254 | 2.57
| B\[—» z/2a %’
; Nz 5=
2.0 A P A A Section A-A
’ |
®
1.5 ° o —— Modified finite element solution using the proposed element type
£ ) o
'% '. o — —— Modified finite element solution using the least square technique
= \. ©
' 104 @CR. ® Stress values derived from matrix elements by the extrapolation
: 9 N\ © method
]
o O  Stress values derived from fibre elements by the extrapolation
. o
o ° method
0.5 1 | ®og °
[
l
T
A B 1
q
05 |
-0.66 [~ %062
1.0 +

Fig. 9. Comparison of the interfacial shear stresses obtained by the modified and conventional finite element methods for a three-
dimensional problem.
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6. Discussion of results

6.1. A discontinuous and some continuous fibres embedded in a matrix

The interfacial shear stress distributions obtained by the two modified finite element solutions, one
using the proposed bi-material element type and the other the least square fitting method, are compared
with the conventional finite element solutions in Fig. 9. It is obvious that the stress values derived from
the fibre and matrix elements are incompatible; the discrepancy between the maximum stresses is 0.50y,,
where oy, is the average axial stress in the matrix. Moreover, the maximum stresses determined from the
fibre and matrix elements do not occur at the same position. Note that the stress values of the
conventional solution can be estimated by averaging the values derived from the fibre and matrix
elements.

The two modified finite element solutions are in better agreement as compared with the conventional
finite element solution in terms of shape, maximum stress value, and position at which it occurs. The
peak values of the ratio of interfacial shear stress to average axial stress in the matrix are 2.57, 2.70 and
1.30 for the modified finite element methods using bi-material elements and least square fitting, and the
extrapolation method, respectively.

The interfacial lateral stress distributions, shown in Fig. 10, again show that the two modified finite
element results are in good agreement and they are superior to the conventional results.

Fig. 11 shows the variations of the maximum interfacial shear stress and maximum interfacial tension
with the end gap spacing, obtained by the two modified finite element solutions. It is obvious that these
two solutions are in good agreement.

The improvements made by the use of the modified element type and analysis procedure are entirely

1.5 A 6
m
_ 5
2%% f
B\I———» z/2a i’
/IV =
1.0 "|k \ A A Section A-A
|
* 0\
| ® e ‘o —— Modified finite element solution using the proposed element type
| o
@f : £. O — —~ Modified finite element solution using the least square technique
*
© | & L 2P ®  Stress values derived from matrix elements by the extrapolation
05 o \ method
)
|
|'o O  Stress values derived from fibre elements by the extrapolation
\d method
b
0 T - ? T T T
B 1 6 7 8 9

z/2a ——»

Fig. 10. Comparison of the interfacial lateral stresses obtained by the modified and conventional finite element methods for a
three-dimensional problem.
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Fig. 11. Comparison of the results obtained by the proposed element type and the least square technique.

due to the imposition of the necessary and sufficient equilibrium and compatibility conditions at the
fibre—matrix interface. This can be clearly seen from the magnitude of the discrepancy between the stress
values derived from the fibre and matrix elements in the case of the conventional finite element analysis
(refer to Figs. 9 and 10).

6.2. A discontinuous fibre surrounded by matrix and composite layers
Fig. 12 shows the interfacial shear stress distributions, along the fibre—matrix and matrix—composite

interfaces, obtained by the two modified finite element solutions, one using the proposed multi-material
element type and the other the least square fitting method. It is obvious that the two solutions agree
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Fig. 12. Comparison of the interfacial shear stress distributions along the interfaces A-B—C and D-E-F obtained by the proposed
element type and the least square technique.

very well in terms of both the shape and magnitude. This shows that the results obtained by the twenty-
noded tri-material elements are not less accurate as compared with those of the twenty-noded bi-
material elements. Thus, there is no necessity to increase the number of nodes significantly when the
number of material types involved is increased.

7. Conclusions

The reliability and potential accuracy of the proposed multi-material element type for determining the
stress distributions at the interfaces between different materials have been clearly illustrated. The
improvement made by the use of the said element type is entirely due to the imposition of the necessary
and sufficient equilibrium and compatibility conditions at the interface between different materials. It is
worth noting that although the modified analysis procedure can provide comparable accuracy in
determining the stress distributions at interfaces, the tedious procedure of least square fitting can be
avoided by employing the proposed multi-material element type. Note that although the proposed
element type is developed for accurate calculation of interfacial stresses, it can also be used to determine
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the effective properties of composite materials similar to the model proposed by Alexander and Tzeng
(1997). However, their model is much more versatile for determining the said properties.

The proposed approach for modifying finite elements is not confined to three-dimensional brick
elements, but is equally applicable to all other element configurations with only minor or no
modifications to the proposed approach.
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